

DRUG REPURPOSING : AN ENIGMA

I am always doing that which I cannot do, in order that I may learn how to do it. — Pablo Picasso

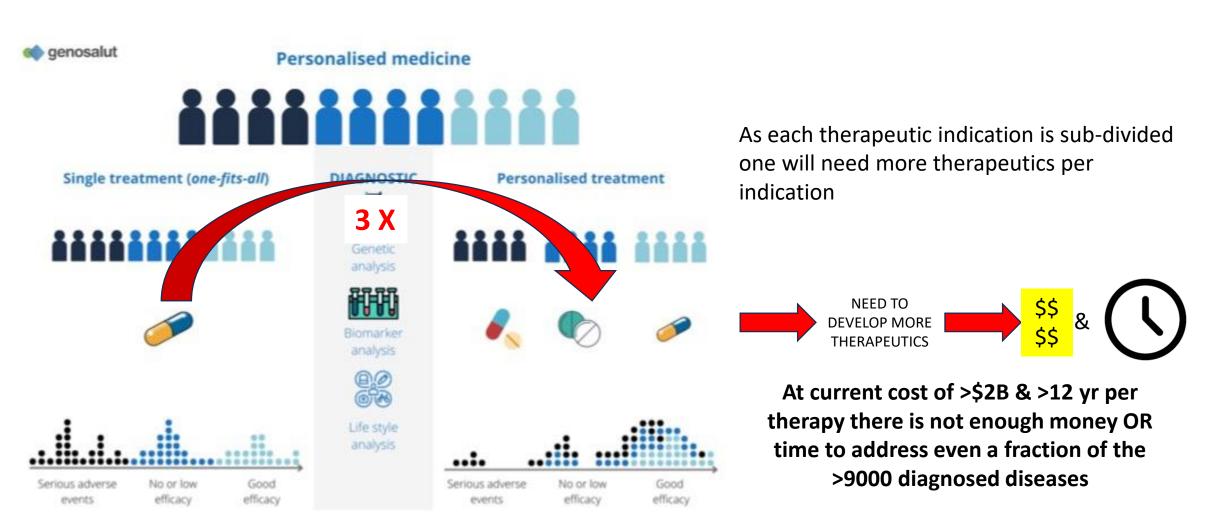
MORE THAN 9000 DISEASES HAVE NO THERAPIES

- Current Drug Discovery and Development (DDD) model cannot address the crisis:
 - Resources at current cost
 - A model in place since the 1960s
 - Alignment and incentives
 - Capacity

Development of tailored therapies will require a millennia if done de novo, drug repurposing may provide a solution – perhaps is the only viable solution

PERSONAL MEDICINE – ADDING TO THE NEED

genosalut Personalised medicine Single treatment (one-fits-all) DIAGNOSTIC Genetic analysis **H**HH Biomarker analysis Life style analysis Serious adverse No or low Good Serious adverse efficacy efficacy events events


Personalised treatment No or low Good efficacy efficacy

Precision medicine uses molecular and genetic information to guide treatment decisions

Personalized medicine is the next step to develop therapeutics to help create an individualized healthcare plan

INCREASING THE CHALLENGE

DRUG REPURPOSING PERHAPS IS THE SOLUTION

N-OF-ONE MEDICINE AT CORE OF PERSONAL MEDICINE

- Understanding of human biology is inadequate. leading to trial and error
- Individual therapeutic response \neq Group based outcome of a randomized controlled trial
- Clinical trials use instruments, devices or tests not practiced in the clinic
- Rare diseases well suited no therapies and heterogenous patient population
- Improve patient care by understanding of complexities of human biology.

REASONS TO REVAMP THERAPEUTIC DEVELOPMENT

- Continuing and compelling need for treatments globally (affordable)
- Lack of a robust cost-effective pipeline of products in discovery and development
- Development dictated primarily based on poor and unreliable financial analyses
- Pharma's failure to deliver cost-effective drugs to patients
- Drug repurposing can enhance translational research for new therapies
 - Significantly lower to >\$2B cost of de novo DDD drug
 - 5-6 years compared to 10-12 years for conventional DDD
 - Success rate >80% compared to ~10%
 - Personalized/precision medicine requiring a better, cheaper and effective therapies.
 - Impact orphan, rare and neglected diseases, provide therapeutics where none existed
- Impact of Drug Repurposing (DRPx) can be real and sustainable

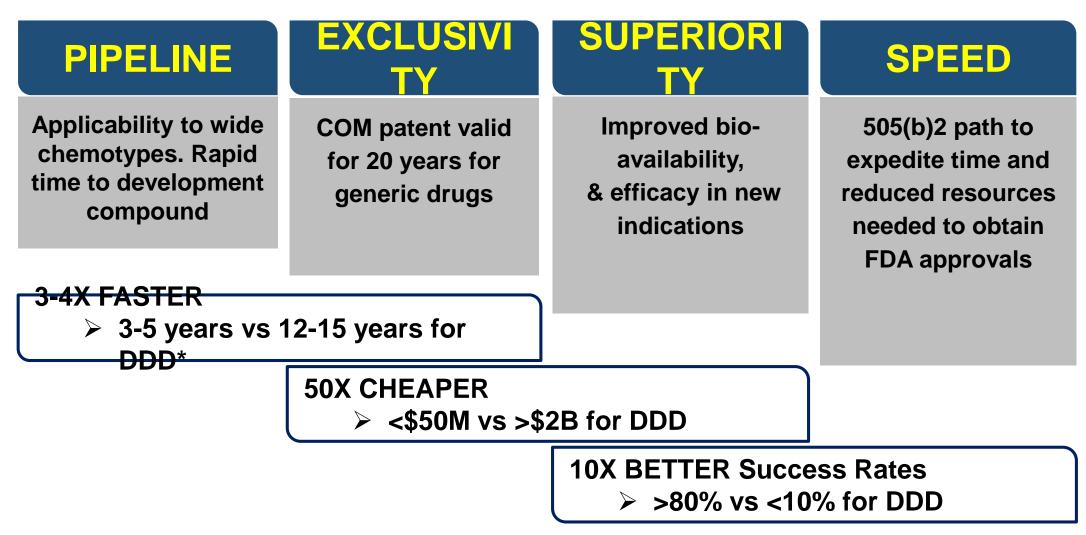
ROADBLOCK IS EXCLUSIVITY/IP

INTELLECTUAL PROPERTY ISSUES

- Impaired patenting of new use and/or enforcement
- Information in public domain can affect novelty and consequently patentability
- Repurposing uses in clinical practice as off-label, non-registered uses
- Available strengths and dosage forms are compatible for new indication
- Some legislations impede obtaining a patent for second or further medical uses.
- In EU/US there is data protection/market exclusivity if new indication is by the originator and not available to non-originators
- Solution new indication requires nonmarketed strengths (preferably lower) or a new formulation.
- Newer derivatives are the best option, but changing the drug molecule implies stepping away from the repurposing strategy.

LADR⁴ – A PLATFORM TECHNOLOGY

- A platform that can help repurpose, reprofile, repositions or rescue drugs
- LADR⁴ improvements include:
 - Enhanced absorption by eliminating the solubility barrier to absorption
 - pH independent solubility resulting improved PK
 - Improved PK can result in an improved PD profile
 - PK properties are tunable
 - Differential dosing and possibility for alternate route of dosing
 - Efficient, cost effective
 - Fo the first-time provides composition of matter protection for repurposed drugs
- Applicable to many chemotypes, resulting in increased solubility, and a patentable NCE.
- The approach has been assessed and validated under the following:
 - <u>IP</u>-issuance of patents on compounds based on the technology across multiple IP jurisdictions
 - <u>Regulatory</u> filings with the USFDA/MHRA
 - <u>Commercial</u> multiple licensing/partnering deals



	Typical Pro-Drug Approach	LADR ⁴ Pro-Drug Approach
Patentability	NCE	NCE
РК	Empirical	Ability to tune AUC, C _{max} , MRT
ADME	Affected	Same as original drug
Exposure	Generally systemic	Negligent (iv), None (po)
Pharmacology	Affected	Not affected
Applicability	Limited	Generally applicable
Regulatory	Standard dev. path	505(b)(2)* path
Solubility	Unpredictable	Inc. & non-pH dependent
Variants	Often single	Multiple Options

* May require a few additional pre-clinical studies

LADR⁴ CONSEQUENCE ON DRUG REPURPOSING

DDD = *de novo* Drug Discovery &

Slide 10 **Development**

	OLD	NEW
Product Portfolio	Narrow	Wide
Markets	Mass Phenotype	Targeted Genotype
Patient Focus	Disease state	Disease life cycle
Treatment	1 Drug / 1 Disease	Continuity of treatmentS
Manufacturing	Few large runs	Many small runs
Sales	Generalized	Focused
Economics	Scale	Knowledge

OLD PHARMA APPROACH

- Time: 10-13 years
- Cost: >\$2 billion
- Success: ~10%

NEW PHARMA APPROACH TO

- Time: 3-5 years
- Cost: <\$100 million
- Success: >80%

FINANCIAL PERSPECTIVE

	DDD	DRPx	LADR ⁴
AVERAGE TIME TO APPROVAL	13.5 yr	6.5 yr	<5yrs
AVERAGE COST TO APPROVAL	>\$1B	~\$300M	<\$50M
SUCCESS RATE			
Discovery	<10%	100%	100%
Phase II to Launch	10%	25%	>25%
Phase III to Launch	50%	65%	>65%
FINANCIAL ANALYSIS*			
NPV @\$300M Annual Sales	-\$795M	\$280M	>\$280M
NPV @\$2B Annual Sales	\$776M	\$4.8B	>4.8B
IRR @\$300M Annual Sales	-3.2%	15%	>15%
IRR @\$2B Annual Sales	15.6%	43.6%	>43%
FASTER BREAK-EVEN	\$1.2B	\$195M	<\$195M

¥

Overall

- High success rate lower risk
- Shorter time to market
- Very low cost to develop
- Lower break-evens
- Higher IRR's

* @estimated 10% cost of capital

LADR⁴ APPLICATIONS

- Generics
- Active metabolites
- Natural products
- Pediatric formulations
- Changing route of dosing
- Improving tolerance and efficacy

- Mitochondria depletion and dysfunction
- Oncology
- Cardiovascular
- Muscle
- Neurodegeneration
- Inflammation
- Pain/Anesthesia
- •

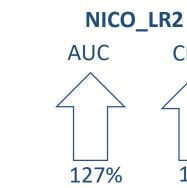
....

SOLUBILITY - HPLC

	SOLVENT			
Compound	Normal Saline 5%DMA/ Normal Saline		9% NMP/ Normal Saline	5% DMSO/ Normal Saline
Paclitaxel	$0.1 \mu g/mL^1$	Not Soluble	Not Soluble	Not Soluble
PAC_LR	>500µg/mL	~1mg/mL	>1.5mg/mL	>1.2mg/mL

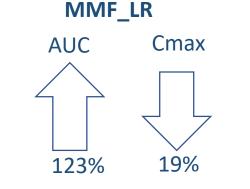
- PAC_LR increase in solubility
 - >5000X in normal saline
 - >10,000X in normal saline/5%DMA
 - >12,000X in normal saline/5%DMSO
 - >15,000X in normal saline/9%NMP

• PAC_LR IS ORALLY ABSORBED WITH NO OVERT GI TOXICITY


LADR⁴ EFFECT ON PK/PD

Dose: 3mg/Kg or 3mg/Kg equivalent oral dose in rat

PK parameters	Nico	NICO_LR1	NICO_LR2
Cmax (µM)	7.8	6.6	9.1
Tmax (min)	70	110	70
AUC (µM*hr)	20.4	28.5	46.4
t _{1/2} (hr)	3.43	4.85	3.67


NICO_LR1 AUC Cmax

Dose: 10 mg/Kg or 10 mg/Kg equivalent oral dose in rat

Parameters	MMF	MMF_LR
Cmax (nM)	53976	43559
Tmax (h)	0.16	0.33
AUC (nM.h)	24435	54522
T1/2 (h)	1.60	5.89

- IMPROVED PK PROFILE HAS TRANSLATED TO PD EFFECTS NOT SEEN BY NICO.
- COMPOSITION OF MATTER IP ISSUED

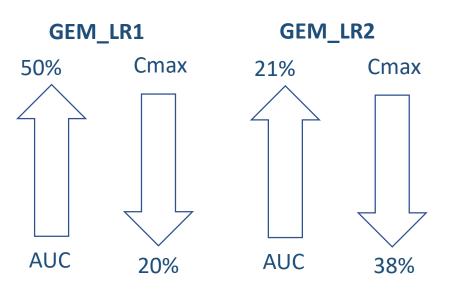
- IMPROVED PK PROFILE MMF_LR TRANSLATED TO
 PD EFFECT NOT SEEN BY MMF
- COMPOSITION OF MATTER IP ISSUED

•

TUNING PHARMACOKINETICS

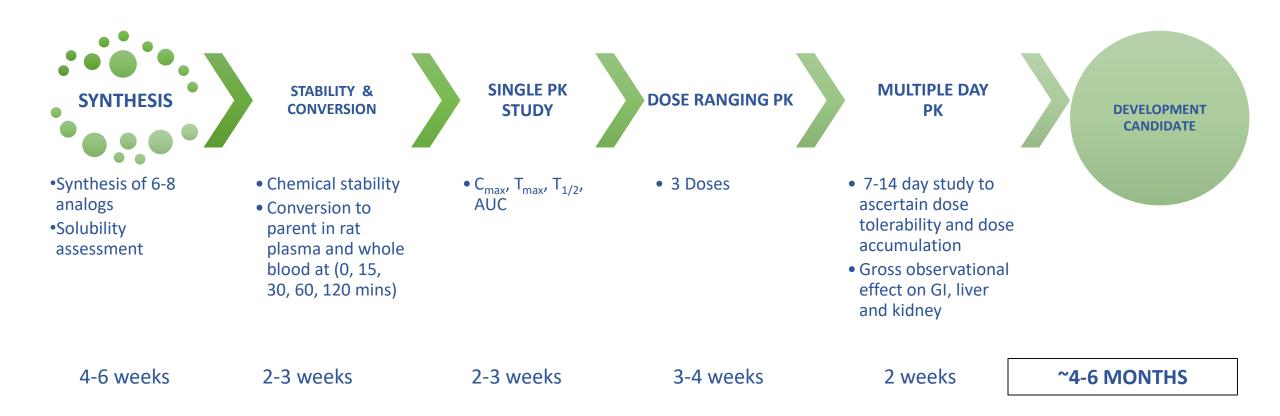
Compound	T _{max} (hr)	C _{max} (nM)	AUC (nM*hr)
INIB	2.00	323.3	1753
INIB-LR1	2.00	433.2	2412
INIB-LR2	2.00	332.5	2712
INIB-LR3	2.00	496.7	3328
INIB-LR4	2.00	420.0	3623
INIB-LR5	4.00	208.3	1559
INIB-LR6	4.00	168.8	1418
INIB-LR7	4.00	131.4	1477
INIB-LR8	4.00	171.3	1503
INIB-LR9	2.00	138.9	1043
INIB-LR10	2.00	231.8	1898
INIB-LR11	2.00	395.9	3115
INIB-LR12	2.00	163.7	1705
INIB-LR13	4.00	71.5	483

EFFECT ON PHARMACOKINETICS


Dose: 3mg/Kg or 3mg/Kg equivalent oral dose in rat

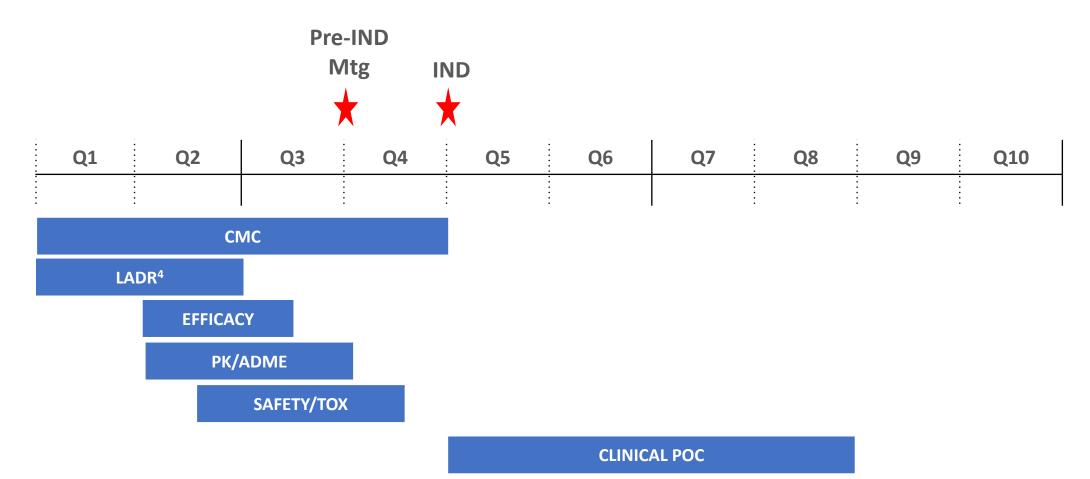
Parameters	ICLO	ICLO_LR	
Cmax (nM)	32.86	309.13	
Tmax (h)	1.58	1.00	
AUC (nM.h)	56.25	638.56	

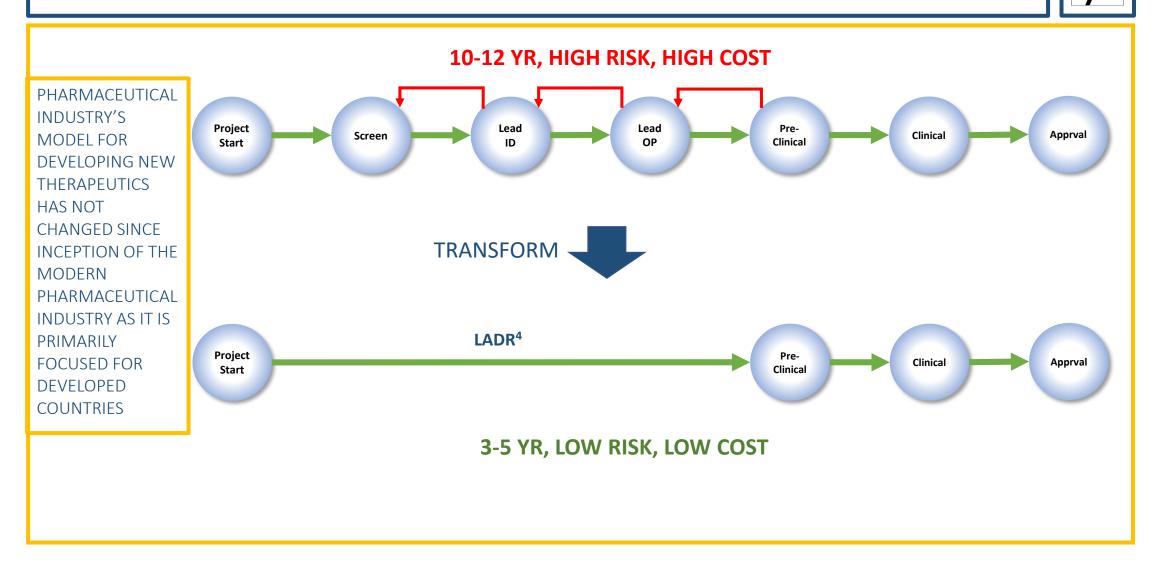
9.5 fold increase in Cmax 11.4 fold increase in AUC


Dose -10 mg/Kg or equivalent dose in mice

PK parameters	GEM	GEM_LR1	GEM_LR2
Cmax (nM)	5816	4631	3600
Tmax (hr)	0.3	0.2	0.4
AUC (nM*hr)	3557	5317	4301

DEVELOPMENT CANDIDATE SELECTION




Slide 18

DEVELOPMENT TIMELINE TO CLINICAL POC

A NEW THERAPEUTIC DEVELOPMENT STRUCTURE

Ž

IN CONCLUSION

- Drug repurposing needs to be a significant approach in the pharmaceutical sector to address many unmet needs.
- Drug repurposing is a crucial strategy for rare and neglected conditions
- It can provide significant financial and societal returns.
- Systems and precision medicine can significantly enhance prospects for drug repurposing
 - Systems pharmacology for poly pharmacology to treat complex disorders
 - Precision medicine for characterization, understanding, and classification of disease
- LADR⁴ can be a path to unlock the value of drug repurposing.